ExpertTCPTM - TCP Throughput Testing (per RFC-6349)

Index

Background

> RFC-2544, Y.1564 (SAM), RFC-6349, SLA

TCP Principles

- > TCP Throughput Inter-Relationships
- Bandwidth * Delay Product
- Bottleneck Bandwidth (BB)
- TCP Congestion Window (TCP CWND) and TCP Receive Window (RWND)
- Packet Loss Rate
- Retransmission Schemes (Go Back N, Selective Repeat)

GL Hardware Platforms

Performance Testing of Packet / Ethernet Connections and Networks

For Predictable

Managed Networks

RFC-2544

Service Level Agreements

from Network Providers, a must

• RFC-6349 (TCP)

User Experience,

Application-Network Sensitive,

TCP Tuning

SAM – Service Activation Methodology

TCP – Transmission Control Protocol

Packet / Ethernet Testing

Typical SLA

Typically

Packet Loss

0.0005 % to 1%

Latency

36 to 75 ms

Availability

99% to 99.9%

EXHIBIT D - Service Level Agreements

1. Service Level Agreement Matrix

	Service Level Agreement Metrics					
Category/Service	Mean Time To Repair	Availability	Packet Delivery or Loss	Jitter	Latency	
Internet Services						
Internet Dedicated (North American IP Network Only)	4 hrs to 8 hrs depending on access	99.90%	≥ 99.50%	≤ 1 ms	≤ 45 ms	
SOHO Services						
Internet Cable	24 hrs					
Internet DSL – Office & Solo	(Excludes Weekends and Holidays)	99.00%	99.00%	≤ 4 ms	≤ 75 ms	
Internet Satellite Enterprise & Office	N/A	99.90%	≤ 1 %	N/A	N/A	
Managed PBX and VoIP Services						
IP Flexible T1, IP Integrated Access, IP Trunking	≤ 4 hrs	99.90%	EF- ≥ 99.995%, AF4x - ≥ 99.99% depending on access	≤ 1 ms	≤ 36 ms	

RFC-2544 vs. ITU Y.1564 (ExpertSAM™)

Both are Connectionless ITU Y.1564 Multiple Services with different priorities **RFC 2544** Single Service Test Throughput Latency Frame Loss Back-to-Back **Jitter**

RFC-2544 Testing

Single Port RFC-2544

Latency=Rx TIME- Tx TIME

- ExpertTCPTM testing is performed using the RFC 6349 standard
- To conduct this test, users need two PacketExpertTM devices one as the client and the other as the server
- The ExpertTCPTM test covers both upload (Client to Server) and download (Server to Client), measuring TCP throughput and efficiency
- RFC-2544 test application includes the following tests:
 - > Throughput Maximum number of frames per second that can be transmitted without any error
 - Latency Measures the time required for a frame to travel from the originating device through the network to the destination device
 - Frame Loss Measures the network's response in overload conditions
 - Back-to-Back It measures the maximum number of frames received at full line rate before a frame is lost

ITU Y.1564 (ExpertSAM™)

Multi-Stream

- Throughput
- Latency
- Packet Loss
- Jitter

Testing Relevance

Problems	RFC-2544	Y.1564	RFC-6349
Single-service Layer 2/ 3/ 4 SLA Issues like loss, jitter	Yes	Yes	N/A
Multi-service Layer 2/ 3/ 4 SLA Issues like loss, jitter	No	Yes	N/A
TCP window sizes (CPE issues)	No	No	Yes
Excessive retransmissions due to policing	No	No	Yes

- Running RFC-2544, Y.1564 or another L2/L3 layer test is always first step
- However, even after these performance tests are passed with good results, end-customers can still complain that the "network is slow" and the cause of poor application performance (i.e., FTP, web browsing, etc.)
- Lack of TCP testing is a turn-up gap because end-customer applications are transported using TCP
- Save operating expense costs by eliminating or quickly resolving painful end-customer finger pointing scenarios

TCP Principle (Packet Loss and Waiting for ACK Reduces Throughput)

Major TCP Throughput Inter-Relationships

- Bandwidth of Applications
- Latency/Delay of Networks
- Packet Loss Networks
- TCP Retransmission Scheme
- Maximum Transmit Unit of Network
- Transmit/Receive Windows of TCP
- # of TCP Simultaneous Connections

Bandwidth Delay Product (Bits or Bytes)

Application and Network are Matched, TCP is Tuned

B*50 = 500,000 bits or 62,500 Bytes

65,535 Bytes is max window

Achieving max throughput

Bandwidth (B) -

Bandwidth (bps), Mbps, the maximum rate at which an application can transmit or receive data (the smaller of the two). Line rate may be shared among applications

Bandwidth Delay Product (BDP) - measured in bits or bytes (divided by 8), the number of bits (or bytes) in the network that are unacknowledged (in transit), B (bps) * RTT (secs) = BDP bits

Effect of Increased Network Delay or Smaller Tx or Rx Buffers

B = 10 MbpsRTT = 100 ms

B*100 = 1,000,000 bits or 125,000 Bytes

But 65,535 Bytes is max window

NOT Achieving max throughput, 50% or less

Latency, Delay, Round Trip Time (RTT) - in seconds (secs), or milliseconds (ms), round trip time includes acknowledgement delay

TCP Throughput -

bits/second (bps), million bits/second (Mbps), One way throughput (RFC2544, Y.1564), Round-trip throughput (RFC-6349) is a different story since retransmissions and acknowledgements are involved.

Effect of Increased Application Bandwidth

Web Servers Clients B bps B bps Delay мти мти мти мти мти мти мти 50 ms B*50 = 100,000 bitsDelay But 65,536 Bytes is 1st ACK Delayed ACK ldle NOT Achieving max throughput, 50% or N ACK

Maximum Transmission Unit (MTU) - Approx. 1500 bytes, max packet size

Jitter - Instantaneous variation in RTT, e.g. if RTT is nominally 100 ms, but varies from 80 ms to 120 ms, then jitter is +/-20ms, or 40 ms. Since jitter affects ACK time, TCP throughput is affected

Packet Loss Rate - Very important factor affecting TCP throughput, could be as high as 2%

B = 20 MbpsRTT = 50 ms

or 125,000 Bytes

max window

less

Effect of Packet Loss Rate and Retransmission Scheme

Effect of Packet Loss Rate and Retransmission Scheme (Contd.)

ExpertTCP™ (RFC-6349 Testing)

The TCP Throughput Testing is conducted in 3 steps simultaneously on up to 16 application streams:

- Path MTU Discovery What is the maximum packet size that can successfully traverse the network?
- Round Trip Time (RTT) Measurement Timestamp based RTT discovery of transmitted packet until acknowledgement packet arrives from far end.
- <u>Measure TCP Throughput</u> Complete measurements per RFC-6349 definitions to provide TCP Throughput results.

GL Hardware/Software ExpertTCP™

Basic Setup

Test Configuration of Client and Server Measurement Results from Server to Client

End-to-End Application Performance Clients Hosts 2Mbps Amazon replaces all the hosts replaces all the clients 2Mbps Congested Google IP PacketExpert 1-10G PacketExpert 1-10G GL Communications Inc. Facebook PacketExpert™ 10GX PacketExpert[™] 10GX Congested Congested 2Mbps Measure Flipkart **Path MTU** RTT 16 **TCP Throughput** 2Mbps CNN

ExpertTCP™ 1G/10GPorts

- TCP Client and Server will be supported in different applications
- For 1G, Port 1 is used
- For 10G, Port 3 is used

PacketExpert™ 10GX - Portable Unit (PXN100, PXN101)

Physical Specifications	Length: 8.45 in (214.63 mm)
	• Width: 5.55 in (140.97 mm)
	Height: 1.60 in (40.64 mm)
	Weight: 1.713 lbs
External Power Supply	• +12 Volts (Medical Grade), 3 Amps (For portable units having serial number ≥
	188400)
	• +9 Volts, 2 Amps (For portable units having serial number ≥ 188400)
BUS Interface	• USB 3.0
	Optional 4-Port SMA Jack Trigger Board(TTL Input/Output)
Protocols	IEEE 802.3ae LAN PHY compliance
	RFC 2544 compliance

MTOP™ Rack Units

Stacked High Density 1U Rack option

Physical Specifications	 Length: 16 in (406.4) Width: 19 in (482.6) Height: 1U / 2U
External Power Supply	ATX Power Supply
BUS Interface	 1U mTOP™ (MT001 + 3x PXN100) Rackmount Enclosure can support up to 3 PXN100s 2U Rack Mount (with 6x PXN100) Rackmount Enclosure can support up to 6 PXN100s Optional 4 to 12 Port SMA Jack Trigger Board (TTL Input/Output)
SBC Specifications	 Intel Core i3 or optional i7 NUC Equivalent, Windows® 11 64-bit Pro Operating System USB 3.0 and USB 2.0 Ports USB Type C Ports, Ethernet 2.5GigE port 256 GB Hard drive, 8G Memory (Min) Two HDMI ports

mTOP™ Probe with 10GX Hardware Unit + SBC

Physical Specifications	 Length: 10.4 in. (264.16 mm) Width: 8.4 in. (213.36 mm) Height: 3.0 in. (76.2 mm) Optional 4-Port SMA Jack Trigger Board (TTL Input/Output) External USB based Wi-Fi adaptor
External Power Supply	+12 Volts (Medical Grade), 3 Amps
SBC Specifications	 Intel Core i3 or optional i7 NUC Equivalent, Windows® 11 64-bit Pro Operating System USB 3.0 and USB 2.0 Ports USB Type C Ports, Ethernet 2.5GigE port 256 GB Hard drive, 8G Memory (Min) Two HDMI ports

Step 1. Path MTU Discovery

client try again with a different TCP packet size

Step 1. Path MTU Discovery (Contd.)

- Path MTU discovery as per RFC 4821 PLPMTUD Packetization Layer Path MTU Discovery
- DF (Do Not Fragment) bit is set to avoid fragmentation when traversing through network
- The algorithm uses TCP retransmit conditions to search for the MTU
- Each conclusive probe narrows the MTU search range, either by raising the lower limit on a successful probe or lowering the upper limit on a failed probe
- Path MTU is discovered for both directions in case of bi-directional test

Step 2. Timestamp based RTT Measurement

- Timestamp based RTT Measurement (RFC1323)
- Tx segment includes current time in option field, Receiver echoes timestamp in ACK

Step 3. Now Ready to Measure TCP Throughput

Step 3. Slow Start TCP Throughput Measurement

Step 3. TCP Throughput Equilibrium

Software Operation

ExpertTCPTM

Test Setup with Impairments

Network Setup

All settings configured locally on the client side.

Network Setup (Contd.)

Separate Upstream and Downstream bandwidths configurable for asymmetrical path

TCP Setup

Single TCP connection

Multiple TCP connections

TCP Setup (contd.)

- Upstream/Downstream/Bidirectional
- Path MTU run test and discover or user can enter manually
- Baseline RTT run test and find out or user can enter manually
- Separate Path MTU/Baseline RTT configuration for Upstream/Downstream directions for asymmetrical paths

Status and Results

Statistics and Periodic Results

Statistics are updated every second and includes -

- TCP Transmitted Frames/Bytes
- TCP Retransmitted Frames/Bytes
- Retransmitted Bytes Percentage

Throughput and RTT values are calculated every second and displayed. Minimum,

Maximum and Average Values are displayed

Final Results

Ideal Throughput - the maximum possible TCP throughput for the given CIR

Ideal Transfer Time - the time taken to transfer the test data size at the ideal throughput

TCP Transfer Time Ratio - Measure of how much Actual transfer time is greater than the Ideal transfer time

TCP Efficiency - measure of the number of Transmitted bytes compared to the retransmitted bytes

Buffer Delay - measure of how much the RTT increases during the actual TCP Throughput test compared to the Baseline RTT

Throughput Graph

With 0.1% Packet Loss

Throughput vs. Retransmitted Frames Graph

With 0.1% Packet Loss

Multiple TCP connections

With 8 TCP connections

Thank You

